
Moving OSIRIS
towards Petascale systems

R. A. Fonseca et al.
1 GoLP/IPFN, Instituto Superior Técnico

2 DCTI, ISCTE - Lisbon University Institute

Lisboa, Portugal

Acknowledgements
• S. F. Martins, J. L. Martins, F. Fiúza, J. Vieira, M. Marti,

L. O. Silva
• Work in collaboration with:

– W. Lu, F. Tsung, W. B. Mori, C. Joshi (UCLA)

• Simulation results:
– epp and IST Clusters (IST), Dawson Cluster (UCLA),

Franklin (NERSC), Intrepid (Argonne), and Jugene (FZ Jülich)

osiris 2.0

New Features in v2.0

· Bessel Beams

· Binary Collision Module
· Tunnel (ADK) and Impact Ionization

· Dynamic Load Balancing

· PML absorbing BC

· Optimized higher order splines
· Parallel I/O (HDF5)

· Boosted frame in 1/2/3D

osiris framework

· Massivelly Parallel, Fully Relativistic
Particle-in-Cell (PIC) Code

· Visualization and Data Analysis Infrastructure
· Developed by the osiris.consortium

⇒ UCLA + IST

Ricardo Fonseca: ricardo.fonseca@ist.utl.pt
Frank Tsung: tsung@physics.ucla.edu

http://cfp.ist.utl.pt/golp/epp/
http://exodus.physics.ucla.edu/

Single core performance

Sample based profile

• 3D simulation plasma shell collisions

• Quadratic interpolation, double precision

Field interpolation
42.9% time, 290 lines

Current deposition
35.3% time, 609 lines

Particle du/dt
9.3% time, 216 lines

Particle dx/dt
5.3% time, 139 lines

• The code spends over 90 % of execution
time in only 4 routines

• These routines correspond to less than
2 % of the code

• Optimization:

• Focus where cycles are spent

performance bottleneck

Hardware Optimization

Tap into the power of
state of the art processing
units

• Generally limited to single
precision arithmetic

• Specific C/C++ code

Verify impact of numerical
precision

• Fields, Particles

• Positions defined as cell index +
position within cell

Interface with hardware
specific code

• Keep existing code structure

• Write hardware optimized
routines

SIMD units

SSE/2/3/4Altivec

Cell

PowerXCell

GPUs

CUDA STREAM
OpenCL

Single precsions: FDTD Yee Solver

• Field Solver
– Laser pulse propagation modeled

accurately

– Differences ~ 10-5

– These are within the expected
values from the differences in
initialization

– No changes required!

Use Cell Based positions for particles

Δx

Δy

dx

dy

(i,j)Store

Δx, Δy
i, j

uniform plasma
• Precision is now uniform across the

entire grid

• Better than double prec. box positions
for very long moving window runs

• Needs checking cell crossings

• Minimal perf. overhead

• 2x the memory for positions

• 30% less particle memory than double
precision box positions

Advance Positions

∆xn+1 = ∆xn +
un+ 1

2 γn+ 1
2

dx
dt

∆xn+1 < 0

i = i− 1
∆xn+1 = ∆xn+1 + 1

i = i + 1
∆xn+1 = ∆xn+1 − 1

∆xn+1 ≥ 1
check cell crossings

Energy Conservation

!"#$

!"#%

!"#&

!"#'

" (""" &""" $""")""" !""""

*+,-./
0123./

45/6751+2

82
/6
39
:;
+2
0/
6<
75
1+
2

linear

quadratic

• Intrinsic effects of the PIC algorithm
have more influence than precision

• The same behavior is observed for
other numbers of particles per cell
(1,4 and 8)

3D Energy Conservation (33 part/cell)

Quadratic
-1 0 1

Linear
-1 0 1

double

3.91949 10-5

single

3.90914 10-5

Precision appears to
have no impact on
energy conservation

• Increased accuracy of the
new particle position
scheme

LWFA simulation

160 c/ωp
2048 cells32 c/ωp

256 cells

Laser
• a0 = 4.0
• λ = 800 nm
• τ = 30 fs
• W0 = 19.5 μm

Plasma
• 1.1x109 particles
• Boosted length: 0.375 mm
• Lab length: 0.75 cm
• ne = 1.5x1018 cm-3

• Electrons + ions
• Quadratic particle interp.

32 c/ωp
256 cells

Charge Density slice

|double-single|

differences ~1%
 → OK!

• Single Instruction Multiple Data
– Modern cpus (Intel/AMD/PowerPC)

include a SIMD vector unit

– Vector registers (4x 32 bit int/float)†

– Instructions act on vector registers

– 4 simultaneous operations

– Programable in C / ASM

• Particle in cell algorithm
– PIC codes are good candidates for

optimization:

– Operations on each particle
independent from each other...

– except for current deposition

– Process 4 particles at a time

– Memory access much more
expensive than calculation

– Avoid temp buffers

– Fit in cache

Current DepositionParticle Push

SIMD Optimizations

† SSE2 also has 2x 64 bit float

Push ParticlesPush ParticlesPush ParticlesSplit Path / Create
virtual particles

Interpolate FieldsInterpolate FieldsInterpolate FieldsInterpolate Fields

Push ParticlesPush ParticlesPush ParticlesPush Particles

Store Results

Load 4 particles into
Vector Unit

Interpolate FieldsInterpolate FieldsInterpolate FieldsCalculate Currents

Load 4 virtual part.
into Vector Unit

Dep. Current vp1

Dep. Current vp2

Dep. Current vp3

Dep. Current vp4

• Particles may deposit to same cell
• Only 1 op per cell (addition)

Memory Access

Fortran code particle data

x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4

• Linear memory access

• 4x3 Transpose is done in register

• Minimal (< 10 cycles) overhead

Keep Memory
Structures

• No changes required
to the rest of the code

4x3 Transpose

Read 3 vectors (12 positions)
sequentially

x1 y1 z1 x2v1 =

y2 z2 x3 y3v2 =

z3 x4 y4 z4v3 =

SIMD particle data

y1 y2 y3 y4vy =

z1 z2 z3 z4vz =

vx = x1 x2 x3 x4Shuffle
Registers

e+ - e- Weibel InstabilityFrozen Plasma

SSE Code Performance:
96ns/particle/step in 3D

Push [ns]Push [ns] Push [M Part/s]Push [M Part/s]

Level

1

2

3

4

2D 3D 2D 3D

44 73 22.5 13.7

70 156 14.3 6.4

101 324 9.9 3.1

149 625 6.7 1.6

1

2

3

4

0 5 10 15 20 25

2

3

6

14

7

10

14

23

Push [M Part / s]

In
te

rp
ol

at
io

n
Le

ve
l

2D
3D

Push [ns]Push [ns] Push [M Part/s]Push [M Part/s]

Level

1

2

3

4

2D 3D 2D 3D

60 96 16.6 10.4

88 193 11.3 5.2

125 332 8.0 3.0

179 739 5.6 1.4

1

2

3

4

0 6.25 12.50 18.75 25.00

1

3

5

10

6

8

11

17

Push [M Part/ s]

In
te

rp
ol

at
io

n
Le

ve
l

2D
3D

System: Intel i7 965 @ 3.20GHz
Compiler: Intel 11.0 (-Ofast)

Peak code performance Typical Simulation

Typical simulation performance
~25% below optimal

How Fast is Fast?

Speedup / Efficiency

Speedup - Weibel Instability Runs

1

2

3

4

0 1 2 3 4

2

3

2

2

3

4

2

2

SSE single / F90 double

Speedup

In
te

rp
ol

at
io

n
Le

ve
l

2D
3D

• Excellent speedup on all geometries /
Interpolation level

• For lower interpolation levels compiler does
vectorization on its own

• 3rd order interpolation has optimal memory
amount over calculation ratio

• 3D 4th order simulations suffering from
memory bandwidth limitations

2D2D2D 3D3D3D

Level

1

2

3

4

Ops Cycles Efficiency Ops Cycles Efficiency

210 142 37% 349 234 37%

480 224 54% 1180 499 59%

890 325 69% 2863 1038 69%

1440 475 76% 5686 2000 71%

0

0.2

0.4

0.6

0.8

1 2 3 4

Floating Point Efficiency Estimate

Interpolation Level

3D 2D

• Estimation assuming:

• nth order poly: (3n-1) ops

• square root: 1 op

• division: 1op

• 4 ops / CPU cycle

Calculations overhead
Order Weights Interpolation

linear

quadratic

cubic Aint =
2∑

i=−1

WiAi

W−1 = − 1
6 (−1 + ∆)3

W0 = 1
6

(
4− 6∆2 + 3∆3

)

W1 = 1
6

(
1 + 3∆ + 3∆2 − 3∆3

)

W2 = ∆3

6

Aint =
1∑

i=−1

WiAi

W−1 = 1
8 (1− 2∆)2

W0 = 3
4 −∆2

W1 = 1
8 (1 + 2∆)2

Aint =
1∑

i=0

WiAi
W0 = 1−∆
W1 = ∆

Ops Linear Quadratic Cubic

2D 219 480 890

3D 349 1180 2863

-2 -1 0 1 2

0.2

0.4

0.6

0.8

1.0S(x)

x [cell]
B-spline blending functions

linear

quadratic

cubic

Measured performance:

• 3D quadratic ~ 2.0 ×
slower than 3D linear

• pipeline and cache effects

performance

~ 3.4 ×

Future:
Test parallel scalability, SIMD, GPUs

Argonne Intrepid
IBM BlueGene/P86% @ 32768 cpus

1

10

100

100 1000 10
4

10
5

Jugene
Intrepid
Optimal

S
p

e
e
d

 u
p

CPUs

Strong Scaling

FZ Jülich Jugene
IBM BlueGene/P
#3 - TOP500 Jul/09
294912 cores
Rmax 825 TFlop/s

Osiris strong scaling up to 32k CPUS

